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By performing lattice Boltzmann simulations of a binary mixture, we scrutinize
the dynamical scaling hypothesis for the spinodal decomposition of binary mix-
tures for the crossover region, i.e., the region of parameters in the growth curve
where neither inertia nor viscous forces dominate the coarsening process. Our
results give no evidence for a breakdown of scaling in this region, as might arise
if the process were limited by molecular scale physics at the point of fluid pinch-
off between domains. A careful data analysis allows us to refine previous esti-
mates on the width of the crossover region which is somewhat narrower than
previously reported.
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1. INTRODUCTION

Spinodal decomposition occurs when a binary mixture, which forms a
homogeneous phase at high temperature, undergoes spontaneous demixing
after imposing a sudden quench to below the spinodal temperature of the
mixture. Following the quench, after a short period of interdiffusion, the
mixture will form domains of different composition, separated by sharply
defined interfaces. In its late stage, the local compositions of the fluid
domains correspond to those of the two bulk phases at coexistence, while
the interfacial tension approaches its equilibrium value. The shape and
evolution of the domains will depend on the initial composition of the
mixture, as well as on the different physical parameters characterizing the
fluids. For the case of a symmetric mixture, in which the amounts and



properties of the two immiscible species are the same, then starting from a
randomly mixed initial state, bicontinuous structures develop.
As emphasized by Siggia (1) and Furukawa, (2) the physics of spinodal

decomposition involves capillary forces, viscous forces and fluid inertia.
Local interfacial curvature generates stress which drives fluid motion; this
will propagate by viscous force or inertial motion (or both) depending on
the parameters of the fluid. If we assume no other physics determines the
spinodal process, the parameters determining the fluid behavior are then
the interfacial tension, s, fluid mass density, r, and viscosity g (for a deep
quench, diffusion does not contribute significantly beyond a short initial
transient). Any degree of asymmetry in the mixture’s composition or
in the dynamical properties of the fluids will provide additional control
parameters.
For the completely symmetric case, from the three relevant fluid

parameters only one length, L0, and one time, T0, can be constructed: L0=
g2/(rs) and T0=g3/(rs2). The absence of other physical mechanisms
controlling the spinodal decomposition in the late-stage domain growth
leads to the dynamical scaling hypothesis. (1, 2) According to it, if we express
the domain size, L(T) as a function of time T in reduced units using the
characteristic length and time scales, the corresponding dimensionless
length l — L/L0, expressed in terms of the dimensionless time t — T/T0, will
be a universal scaling function

l=l(t) (1)

the same for all fully symmetric, binary incompressible fluid mixtures. The
use of scaling concepts has been of extreme help in understanding and
rationalizing the physics underlying complex phenomena. In the present
problem, the dynamical scaling states that all fluids will have a unique
domain growth rate governed only by the value of L/L0, which controls
the dominance of viscous or inertial fluid transport. Therefore, this scaling
expression provides a systematic and simple way to analyze the spinodal
decomposition of any fluid, in terms of its basic physical mechanisms.
Furukawa (following Siggia) (1, 2) analyzed the limiting behavior of the

proposed universal function l(t). For small enough t fluid inertia is
negligible compared to viscous forces, while for large t the opposite is
true. (3) Balancing the dominant terms in the Navier–Stokes equation in
each case leads to the asymptotes

l(t)Q ˛bt; t° tg

ct2/3; t± tg
(2)

40 Pagonabarraga et al.



where tg stands for the crossover time, when the viscous and inertial con-
tributions are comparable. This can be defined more precisely as the time
at which the extrapolated viscous and inertial asymptotes of the l(t) cross
each other on a log–log plot. For intermediate times around tg, the univer-
sal function l(t) will exhibit a smooth crossover from the viscous to the
inertial asymptotic behavior. It is important to remark that dynamical
scaling implies the universality, not just of the asymptotic power laws for
the scaling function l(t), but of the entire curve, and accordingly of the
amplitudes b, c and tg. Note also that the scaling hypothesis assumes that
there is only one characteristic length scale. The existence of two different
asymptotic regimes is due to the competition of different physical mecha-
nisms. In this respect, this is different from the crossover described in criti-
cal phenomena, which is usually related to the competition between two
different length scales. As a result, the crossover region in our case does
form part of a genuinely universal curve.
Although there is good experimental evidence for the viscous growth

regime, (4) the inertial regime is more difficult to study experimentally. (5, 6)

Therefore, simulation techniques have so far been the basic tools to analyse
the different growth regimes and validate the scaling hypothesis. (6–9) (The
ease with which fully symmetric immiscible fluids can be created on a
computer, compared to the laboratory, is also a factor.) Such scaling has
allowed classification and comparison of (previously scattered) simulation
results as well as a critical analysis of the derived parameters (such as b),
revealing a number of discrepancies in the published data (mainly related
to residual diffusion and/or finite size effects). (6) In our view, the existence
of a viscous scaling regime (with a universal b) is now fairly clearly estab-
lished in three dimensions. (The case of two dimensions is quite dif-
ferent. (10, 11)) The search for an asymptotic inertial regime has likewise been
extended carefully up to Reynolds numbers of order 300 (with Reynolds
number defined as Re=LL̇r/g=l̇l). Although there is still a controversy
regarding the true final asymptote at sufficiently high Reynolds num-
ber, (4, 12) previous work (6, 7) does establish the existence of a well defined
asymptotic inertial regime, at least as far as the l(t) curve is concerned, at
relatively modest Re \ 100. The attainment of asymptotic behaviour in this
region of l(t) (roughly, 3×103 < l < 3×105) is less obvious when one
examines velocity statistics (6) or interfacial dynamics. (13) However, further
exploration at still higher Re (say, l \ 106) remains out of reach with
present simulation methods.
Compared to the status of the viscous and inertial regimes, the exis-

tence of dynamical scaling in the crossover regime remains to be estab-
lished. So far it was reported in refs. 6 and 7 that the crossover region
spans four decades in dimensionless time, and that the crossover time tg,
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although formally of order one, is about 104. But the lattice Boltzmann
data presented in ref. 6 is in fact relatively sparse for the crossover region,
and does not allow a direct check of the proposed collapse onto a universal
curve.
There are, however, some results found using dissipative particle

dynamics (9) which lie within the crossover regime as determined in ref. 6.
Jury et al. (9) reported incomplete collapse of this data: each dataset had a
similar slope but the curves did not join up on the l(t) plot. Their data was
found to be broadly compatible with logarithmic deviations from dynamic
scaling. Although the more recent (lattice Boltzmann) results obtained in
ref. 7 suggest that those deviations may instead be due to finite size effects,
the validity of dynamical scaling within the crossover region is far from
established.
Jury et al. noted that the dynamical scaling hypothesis relies on the

assumption that viscous forces and inertia are the only physical mecha-
nisms controlling domain growth. Other physics is, however, involved too:
we have already mentioned diffusion, which can however be kept
negligible, on the domain scale, for deep quenches (see ref. 6 for a discus-
sion of this). Another mechanism that must be present during the domain
growth arises during topological reconnection or pinch-off events. These
events are necessary for the coarsening of the bicontinuous structure. They
correspond to the contraction of a fluid neck to zero width in a finite time
(see, e.g., ref. 13 for visualizations of the evolution and rupture of necks in
the different regimes of spinodal decomposition). Unless diffusion interve-
nes first, the final stage of such a reconnection event always involves a
microscopic, molecular, length scale. Moreover, recent studies indicate that
such reconnection events follow a distinct scaling of the dynamics (14, 15) that
might, in principle, interfere somehow with the scaling law for the domain
size. It is not clear whether this could happen only in the crossover region
and not in the viscous or inertial asymptotes, but nonetheless, there is
enough uncertainty to warrant a detailed study of the crossover domain,
which we now present.

2. MODEL

Spinodal decomposition with a deep quench is essentially a problem of
deterministic, isothermal fluid motion coupled to moving interfaces, in
which it is important to deal with pinch-off events consistently. As already
mentioned, diffusion is irrelevant, and thermal fluctuations can also be
disregarded at long times. To study this process we have therefore used the
lattice Boltzmann method. This is a simulation technique in which the
interfaces emerge as a result of the imposed free energy. This fact has some
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advantages with respect to other standard numerical techniques to study
Navier–Stokes equations. The details of the model for the case of a binary
mixture we have used are described elsewhere. (6, 16, 17) The model simulates a
binary mixture with the model free energy

F=F dr 3 −A
2
f2+
B
4
f4+
1
3
r log r+

o

2
|Nf|24 (3)

in which A, B are parameters that control the phase behavior of the
mixture. When A < 0 and B > 0 two phases coexist in equilibrium. In
Eq. (3), f is the usual order parameter (the normalized difference in
number density of the two fluid species), and if A=B, the order parameter
in the coexisting low temperature phases takes values f=±1. (This is a
matter of convention, not of physics.) The parameter o is related to the
energy cost of generating a spatial gradient. It determines the value of the
interfacial width, t=5`o/2A, and the surface tension s=`8oA3/9B2.
Finally, r is the total fluid density, which remains essentially constant
during phase separation. (This is ensured by working at very low Mach
numbers.)
The lattice Boltzmann model for a binary mixture involves two veloc-

ity distribution functions, f and g, on a discrete lattice with a discrete time
relaxational dynamics. The properties of the model are fixed through the
equilibrium distributions towards which f and g relax; the zeroth, first and
second moments of f determine the density, the momentum flux, and the
stress tensor, while moments of g determine f and the order parameter
flux. In this way the dynamics of the distribution functions is connected to
the macroscopic behavior of the fluid. It has been shown that the Navier–
Stokes and advective-diffusion equations are recovered as the hydrodyna-
mic limit of the corresponding lattice Boltzmann dynamics, (17) at least in
the incompressible limit. (6) The form of the pressure tensor depends on the
free energy model chosen. (17)

The spontaneous emergence of interfaces as a result of the imposed
free energy, Eq. (3), is an appealing feature of this method. However, as a
result the interfaces are not structureless, but have finite width t. In prac-
tice, the parameters of the free energy are chosen such that t remains
around 3 lattice spacings in all runs; this minimizes anisotropy effects due
to the underlying lattice. The finite width imposes restrictions on the length
scales that can accurately be studied with this method. In real fluids (deeply
quenched) the interfacial width is a few atomic diameters, whereas we are
often in the regime of t± L0 (especially for the most inertial runs), which
is much larger. For spinodal decomposition this should not matter as long
as the dynamical scaling hypothesis holds. However, if the interfacial width
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turns out to be dynamically relevant, as could possibly apply during pinch-
off, the variation between runs of t/L0 has to be taken into account.
Since we are interested in testing the dynamical scaling hypothesis in

the absence of diffusion, the mobility must also be chosen to ensure that,
after a short initial transient which is always dominated by diffusion (when
the initial domains are formed) diffusion gives an irrelevant contribution to
the growth rate. This can be done using protocols described in ref. 6.

3. METHOD AND RESULTS

We have performed thirteen lattice Boltzmann simulations on large
(2563) lattices, with parameters chosen to explore the crossover region, as
well as a couple of runs deeper into the viscous and inertial regimes to
clarify the convergence to the corresponding asymptotic regimes (see
Table I). These add significantly more data to those presented previously
in refs. 6 and 7, where the focus was on the asymptotes rather than the
crossover regime. In fact, only two of the thirteen runs correspond to
parameters used in the previous references. As we discuss below in detail,
we need to select, for each run, the subset of meaningful data, given that at
short times diffusion is an important contribution to domain growth, and
that finite size effects have to be avoided. We start with random initial
conditions (effectively infinite temperature), and choose the parameters in
the free energy, Eq. (3), such that B > 0 and A=−B. This is equivalent to
performing a sudden deep quench below the spinodal temperature of the

Table I. Parameters of the Different Runs and Characteristic Length and Times.

Runs 20 and 29 Correspond to the Notation of Ref. 6

Run number −A/B o g M s L0 t0

29 0.0625 0.04 0.2 0.3 0.042 0.952 4.54
13 0.00625 0.004 0.035 4.0 0.0042 0.29 2.43
20 0.00625 0.004 0.025 4.0 0.0042 0.15 0.885
1 0.03125 0.02 0.05 1.0 0.021 0.12 0.283
2 0.00625 0.004 0.02 4.0 0.0042 0.095 0.45
3 0.00625 0.004 0.015 4.0 0.0042 0.054 0.19
4 0.00625 0.004 0.01 4.0 0.0042 0.024 0.0567
5 0.0125 0.008 0.0092 2.0 0.0084 0.01 0.011
7 0.00625 0.004 0.005 4.0 0.0042 0.0059 0.00709
8 0.00625 0.004 0.0035 4.0 0.0042 0.0029 0.00243
9 0.00313 0.002 0.00247 8.0 0.0021 0.0029 0.00336
10 0.00313 0.002 0.00183 8.0 0.0021 0.0016 0.00139
11 0.00625 0.004 0.0026 4.0 0.0042 0.0016 0.00099
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mixture (which corresponds to A=0). We then follow the subsequent
evolution of the system by computing the characteristic domain size L(T),
which is then converted to reduced physical units.
There are several different ways to measure the domain size in a

binary mixture. (6) Here we choose to employ a characteristic length scale
extracted from the curvature of the interface (see ref. 19). The latter is a
tensor, defined by

Dab=
; lattice “af “bf

; lattice f
2 (4)

where a and b refer to the three spatial coordinates, and “a means the
spatial derivative with respect to the a component of the spatial coordinate.
The three eigenvalues of this matrix li are then three characteristic inverse
lengths. From them, the domain size, L, can be estimated as

L=
3

l1+l2+l3
(5)

Strictly speaking, this is a square of a length; it is related to the product of
two characteristic lengths. However, the second relevant length for the
order parameter gradients in the system is the local (microscopic) interfa-
cial width. This is the same for all the simulations; hence, it contributes a
constant factor of order unity to Eq. (5). We have monitored the values of
the domain size as a function of time after the quench, L(T). Before
seeking data collapse by converting to reduced physical units, it is very
important to select the subset of reliable data from each simulation run.
Early in each run one always has a period of interdiffusion, followed by a
regime where diffusion and hydrodynamics are both present. Only when
the diffusive contribution to the coarsening rate becomes small can the
L(T) data be expected to scale onto the universal l(t) curve. (We removed
the early time data by eye but the cutoff values we used were comparable
to those that V. Kendon obtained by a more rigorous procedure. (6)) On the
other hand, it is found that when the domain size is much larger than
about a quarter of the simulation box, finite size effects start to be relevant.
Hence, from each simulation only a central portion of the overall data can
be relied upon; this data covers at most one decade or so in time. (6) As a
result, the full crossover region cannot be spanned by a single run but only
by varying simulation parameters to access l(t) one section at a time. Since
other parameters, such as t/L0, are varying during this procedure, there is
no guarantee, in general, of a smooth joining up of the curves. In Table I
we show the set of fluid parameters we have used to explore the crossover
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Table II. Computed Values of the Initial Time Tint

Run number 29 13 20 1 2 3 4 5 7 8 10 11
Tint 1200 700 1000 900 1200 1300 1550 1700 1700 1700 1700 1650

regime. We have also added a couple of sets that lie in the asymptotic
regimes to check that the universal viscous and inertial scaling regimes are
indeed recovered.
The initial period of diffusive growth, in each run, means that the

reduced physical time must be defined as t=(T−Tint)/T0, where the offset
time Tint is not known a priori, and can vary from one run to another.
Previously, Kendon et al. developed a careful procedure for fitting this
parameter, (6) separately for each run, using the data from that run only.
Although this is an objective procedure, the fitted values of Tint are very
sensitive to the details of the fitting, and the precise location of the result-
ing l(t) data is similarly sensitive. In the current work, therefore, we leave
Tint as a free parameter for each run, and then globally optimize the choices
of all the Tint’s to achieve the best data collapse on the l(t) curve. This is
best done by human eye using an interactive graphics routine. The Tint
values are displayed in Table II; given the uncertainties, these are broadly
consistent with the ones obtained previously.
We show in Fig. 1 the scaling curve we have obtained in this fashion

for all the runs of Table I. One can clearly see that all the simulation data
can thereby be made to fall on a universal scaling curve, with overlapping
datasets extending from the viscous regime deep into the inertial one. We
have also drawn the two lines that correspond to the viscous and inertial
asymptotic laws to display how these are attained at either end of the
crossover. Since we are using a definition for the domain size different from
that of ref. 6 , we have to recompute the amplitudes of the asymptotic law.
These are b=0.065 and c=1.3, which gives a crossover time tg=104. Our
crossover region now spans about two decades, somewhat narrower than
the previous estimates; in particular, runs that were previously taken to lie
in the late crossover, (6, 14) Run 29 and Run 30 are found to be much closer
to the asymptote than previously suggested. The reduced crossover width is
more in line with normal expectations and suggests that uncertainty in the
determination of Tint by the previous method (6, 7) led to an exaggeration of
the crossover.
In Fig. 2 we zoom in on the initial part of the crossover region. It is

apparent how (to within small errors), the different runs lie on top of each
other, as pieces of a continuous universal curve. It is interesting to look at
Run 13. Although in general, one run spans only one dynamical regime
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Fig. 1. Scaling plot in reduced variables for the runs of Table II. Also shown the asymptotic
theoretical predictions with amplitudes fitted from the simulations.

(due to the reasons explained at the beginning of the section), Run 13
clearly exhibits a linear growth followed by a deviation, at the beginning of
the crossover region. That this is not a finite-size artifact is clear, since runs
that lie further in the crossover region coincide with the final portion of
Run 13.
In Fig. 3 we have focused on the late part of the crossover region.

Again, one can clearly see how different runs lie on top of each other. The
relaxation towards the final, inertial growth law is faster than previously
predicted. There is no evidence of any kind of deviations. This nice collapse
into a single curve rules out the logarithmic deviations (9) that could be
attributed to the emergence of a new length scale in this dynamical regime.
Our procedure for choosing Tint (by optimizing data collapse) is less

objective than the one used previously by Kendon et al. (6) and it is not
surprising that the resulting scaling is better. However, the sensitivity to
Tint, and the quality of the collapse when this is allowed to float, leads us to
conclude that there is no firm evidence against dynamical scaling in the
crossover region, despite the previous results of Jury et al. (9)

Of course, since the fitting is done by human eye, there is a danger,
perhaps, of seeing scaling where none exists. To check this, we have tried
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Fig. 2. Scaling plot in reduced variables for the runs of Table II that correspond to the
transition from the viscous to the crossover regime.

the same procedure in two dimension where scaling is indeed held not to
exist (at least, not for bicontinuous morphologies). (10, 11) The same approach
to the data does not give similar collapse of the two dimensional data,
which is reassuring.
As a further validation of our approach, we have also checked our

results by computing the domain size using an independent domain size
measurement. Specifically, for Runs 3, 4, 7, 13, 20 and 29 we have
computed the spherically averaged order parameter structure factor

S(k, T) — F
|k|=k
f(k, T) f(−k, T) d3k (6)

from it, we can obtain a measure of the mean domain size as the inverse of
its first moment,

Lf(T)=
> S(k, T) dk
> kS(k, T) dk

(7)
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Fig. 3. Scaling plot in reduced variables for the runs of Table II that approach the inertial regime.

Fig. 4. Scaling plot in reduced variables for the runs of Table II. The symbol (II) in the key
of the figure refers to computing the length scale using Eq. (7). The same notation is used
in Fig. 5.
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Fig. 5. Comparison of the scaled data computed using Eqs. (5) and (7). For Run 29 we
show the estimated error bars in the determination of L from Eq. (5) as upper and lower
segments.

In this way we again sample the universal curve from the viscous up to the
inertial regime. We have used the values of Tint obtained from L to con-
struct the universal curve for Lf. In Fig. 4 we show the different runs after
scaling appropriately, which shows that we are able to collapse all the data
on a single universal curve. It exhibits the two asymptotic viscous and
inertial regimes. The fact that we are able to use the obtained values of Tint
to construct the universal curve using independent measures of the domain
lengths gives confidence that the scaling procedure we have followed is
robust. If we compare the l(t) curves obtained from the two domain
lengths, we see that the ones derived from L(T) tend to lie above those
corresponding to Lf. However, in Fig. 5 we compare the scaled curves
obtained using the two length measures for a few runs. For Run 29 we
have estimated the error in the measure as the mean square deviation of
three length-scales measured as 1/l1, 1/l2 and 1/l3 [see Eq. (5)], which
we display as upper and lower bars. The error in the determination of the
domain size, which is around 5%, does not allow to distinguish, in the late

50 Pagonabarraga et al.



portion of the runs, between the two measures. This analysis also shows
that the slight deviations from scaling visible in Fig. 2 are well within the
error tolerances expected. (18)

4. CONCLUSIONS

In this paper we have analyzed in detail the crossover region of the
spinodal decomposition of a binary mixture. By performing a number of
new large lattice Boltzmann simulations, we have covered the regime
where viscous forces and inertial transport are simultaneously relevant.
Throughout the crossover, the data is compatible with the existence of a
universal scaling curve l(t) in reduced physical units. The crossover region
is somewhat narrower than previously reported. This can be attributed to
the uncertainties in the behavior in the late part of the crossover arising
from the ambiguities in the determination of the fitting parameter Tint. The
existence of the scaling curve argues against the suggestion (9) that the
physics of pinch-off events can strongly interfere with the domain growth
in this regime of parameters.
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